A unified integro-differential nonlocal model
نویسندگان
چکیده
منابع مشابه
On the Semilinear Integro-differential Nonlocal Cauchy Problem
In this paper, we prove an existence theorem for the pseudo-nonlocal Cauchy problem x′(t) + Ax(t) = f(t, x(t), ∫ t t0 k(t, s, x(s))ds), x0(t0) = x0−g(x), where A is the infinitesimal generator of a C0 semigroup of operator {T (t)}t>0 on a Banach space. The functions f, g are weakly-weakly sequentially continuous and the integral is taken in the sense of Pettis.
متن کاملFractional nonlocal impulsive quasilinear multi-delay integro-differential systems
Correspondence: [email protected] Department of Mathematics, Faculty of Science, Guelma University Guelma, Algeria Abstract In this article, sufficient conditions for the existence result of quasilinear multi-delay integro-differential equations of fractional orders with nonlocal impulsive conditions in Banach spaces have been presented using fractional calculus, resolvent operators, and ...
متن کاملFractional Evolution Integro-Differential Systems with Nonlocal Conditions
In this paper, we use the theory of resolvent operators, the fractional powers of operators, fixed point technique and the Gelfand–Shilov principle to establish the existence and uniqueness of local mild and then local classical solutions of a class of nonlinear fractional evolution integro-differential systems with nonlocal conditions in Banach space. As an application that illustrates the abs...
متن کاملIntegro-differential Equations of Fractional Order with Nonlocal Fractional Boundary Conditions Associated with Financial Asset Model
In this article, we discuss the existence of solutions for a boundaryvalue problem of integro-differential equations of fractional order with nonlocal fractional boundary conditions by means of some standard tools of fixed point theory. Our problem describes a more general form of fractional stochastic dynamic model for financial asset. An illustrative example is also presented. 1. Formulation ...
متن کاملThe Tau-Collocation Method for Solving Nonlinear Integro-Differential Equations and Application of a Population Model
This paper presents a computational technique that called Tau-collocation method for the developed solution of non-linear integro-differential equations which involves a population model. To do this, the nonlinear integro-differential equations are transformed into a system of linear algebraic equations in matrix form without interpolation of non-poly-nomial terms of equations. Then, using coll...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Engineering Science
سال: 2015
ISSN: 0020-7225
DOI: 10.1016/j.ijengsci.2015.06.006